Visible thinking and complex examination questions

No students were permanently harmed during this lesson.

Since the introduction of the new A – Level psychology specifications, complex essay questions have become a prominent feature of the examination landscape. By ‘complex’ questions, I mean those that  impose several distinct skill requirements that must be addressed simultaneously in order to attract credit. For example, the Edexcel 2018 Paper 2 contained the following question in the ‘Criminological Psychology’ section:

Kylie witnessed a crime and had to go to the police station for an interview. The crime involved a robbery of a shop in a busy shopping centre. Kylie was walking past the shop with her friends when she heard the shopkeeper shouting for help, as the thief ran out of the shop. The police carried out a cognitive interview to gather as much information as possible from Kylie about what she witnessed.

To what extent would the cognitive interview be effective in gathering accurate information from Kylie about the crime she witnessed? You must make reference to the context in your answer. (16)

In order to answer this question effectively, the candidate must evaluate cognitive interviewing in the context of the crime witnessed by Kylie. This means she has to show knowledge and understanding (AO1) of how CI might be used with Kylie (AO2) and make judgements about its probable effectiveness in that context (AO3). This is rather more demanding than the ‘Describe and evaluate cognitive interviewing’ type questions that used to prevail at A – Level.

When these types of question started appearing my initial response was that they were needlessly difficult and represented nothing more than a new set of hoops I needed to train my students to jump through. However, a couple of years into the new specifications and I’m now more inclined to welcome them as a challenge for us and our students to embrace. After all, our task as psychology educators is to support our students in attaining mastery of core psychological concepts, research, methodologies and ways of thinking. Complex questions are a more valid test of mastery than straightforward ‘describe and evaluate’ questions as they are not amenable to a brute-force ‘rote learn the facts and the criticisms without understanding’ approach. More pertinently, it seems to me that by using these types of question as a teaching tool, we can support out students in becoming better psychological thinkers.

Because the context material that accompanies complex questions cannot be predicted in advance, they require students to construct their response on the fly, under examination conditions.  In other words, they have to think. As Dan Willingham (2010) memorably points out, thinking is difficult and students are disinclined to do it even under ideal conditions. The examination situation imposes substantial psychological demands that reduce students’ capacity to think effectively (Putwain & Symes, 2018). Consequently, it is our responsibility to teach our students to think in the right ways long before the exam, and support them in acquiring a degree of automaticity that will allow them to devote their already-stretched cognitive resources to engaging with the content of the question.

The trouble with thinking is that you can’t see it. That makes it difficult for us to explain the sorts of thinking we want our students to do. It also makes it difficult for us to access our students’ thinking processes so we can check whether they’re being directed in the right way.  In recent years, I’ve drawn a great deal on Ron Ritchhart’s notion of making thinking visible to support my students in learning how to think (see Ritchhart et al., 2011). Ritchhart’s approach relies on  manipulables (e.g. sticky-notes) to represent concepts and the use of spatial organisation to represent relationships between them. Together with simple, repeatable dialogues and structures, they present a powerful toolbox for reducing unhelpful cognitive load, establishing transferable routines for dealing with generic subject-specific thinking situations and getting students’ thinking out in the open, where we can see it.

A visible thinking routine for complex essay questions

Here’s how I’ve been using visible thinking to teach students how to address complex questions. I lay the groundwork by presenting a question and asking the students to consider how they should address it and what an answer should do.  For example:

Joe has been convicted of criminal damage.  The magistrate sentencing noted that Joe had been arrested a number of times for similar acts and had a record of disruptive behaviour going bad to his school days.  The magistrate accepted that most teenagers get into trouble but that most seem to ‘grow out of it’ whilst Joe had not.  When asked why he had committed this crime, Joe said, ‘mostly because I’m bored…but sometimes things just wind me up.  That day I was supposed to be meeting my mates but the bus didn’t come so I just lost it a bit, smashed the bus stop up a bit.’  Joe’s father and older brother both have a similar history of antisocial behaviour and offending. 

Evaluate personality theory as an explanation of Joe’s offending. (16)

I encourage my students to adopt a four-question routine to set themselves up to address the demands of the problem:

  1. What do I know about this topic?
  2. What’s relevant in the context?
  3. What am I making judgements about?
  4. How can I justify those judgements?

This type of subject-specific metacognition is best taught by modelling, in my experience. The aim is for the students to understand that, in order to address the question satisfactorily, they need to form a principled judgement (AO3) of whether personality theory (AO1) is a valid explanation of Joe’s offending (AO2).

Students are then given sheets of A3 paper and three colours of sticky note (in my case, green, blue and orange). Pairs or three work well. The visible thinking routine is as follows:

  • First, students recall as many facts as they can that represent the knowledge and understanding required to address the question. They write one fact per green sticky note. These are collected in the centre of the A3 sheet, arranging them such that more closely related ideas are grouped together on the page.
  • Second, the students are then asked to read the context material carefully and look for specific things in the text that relate clearly to the facts/ideas on the green sticky notes. Each of these is noted on a blue sticky note and added to the sheet, near to the relevant facts, but concentrically outward.
Different colours denote different skill elements/assessment objectives.
  • Third, the students are asked to identify material relevant to evaluating personality theory, for example, supporting or challenging research findings, conceptual strengths and weaknesses and so on. Each of these is added to an orange sticky note, again placed near to the relevant application (blue) and knowledge (green).

The students are encouraged to keep thinking and recalling more relevant facts, applications and evaluative points throughout the activity, as each point made and recorded may cue either recall of other material or provoke new links between the ideas, deepening understanding.

Lines of reasoning flow from the centre towards the edge.

The fact that all the ideas are present on the page reduces cognitive load, helps the students think more clearly, and tells the teacher where they can most incisively intervene.  The flexible nature of sticky notes allows the students to think and rethink by trying out different positioning and juxtapositionings of ideas. The different colours allow the students to keep track of the different skill demands of the question, allowing them to spot gaps and deploy material effectively. By now the students should be in a position to trace lines of reasoning about the question by working from the middle to the edge.

  • The final step is for students to reorganise the sticky notes into a linear plan from which they could write their response.  The different coloured notes help here, prompting the students to organise their writing into balanced paragraphs that address all the question requirements.
The linear plan supports thinking about the sequencing of material.

I’ve only recently started using this approach with my Year 13s in a consistent way. They have commented positively on how it is helping them keep track of task requirements and organise their ideas before writing. Of course, the long-term intention is to remove the physical placeholders and the prompts from the teacher that support the process, leaving a purely mental routine that the students can use independently and without prompting. My feeling is that the systematic withdrawal of the various elements will be a fairly straightforward thing to plan, and, at each stage, I can draw attention to what I’m removing and why (e.g. ‘last time I gave you three colours of sticky notes but time I’m not…’) so that the students can establish a conscious rationale for their own thinking when approaching this type of problem.

It’s much more complicated to explain this approach than it is to do it in practice; I hope the accompanying photographs make this clear. I believe that it has the potential to help more of my students access the higher essay mark bands in their examinations. More importantly, I also believe that it can play a part in helping my students to become better thinkers in and about psychology.

Thanks

The concentric planning approach on which this VTR draws was developed collaboratively with Charlotte Hubble.

References

Putwain, D. W. & Symes, W. (2018). Does increased effort compensate for performance debilitating test anxiety? School Psychology Quarterly, 33(3), 482-49

Ritchhart, R., Church, M. & Morrison, K. (2011).  Making thinking visible: How to promote engagement, understanding and independence for all learners. Hoboken, NJ: Jossey-Bass.

Willingham, D.T. (2010). Why don’t students like school?  A cognitive scientist answers questions about how the mind works and what it means for the classroom.  San Francisco: Jossey-Bass.

‘Psychology and Crime (Second Edition)’ Out Now

Back in 2002, David Putwain and I wrote a short book called ‘Psychology and Crime’ for the Routledge Modular Psychology series. It sold quite well for a book of this sort (in excess of 10,000 copies, apparently). A year or so ago, Routledge approached me asking whether I wanted to update it. I was looking for a project to help me recover from heart surgery and a stroke so I took it on. I even managed to convince David to contribute a chapter, despite his being very busy as an expert on examination anxiety.

The result is Psychology and Crime (Second Edition), which is out now, published by Routledge. It’s a concise introduction to the field of criminological psychology covering the nature and measurement of crime and victimisation, theoretical explanations, police investigations, courtroom processes, punishment and rehabilitation and critical perspectives on crime and criminological research. If you’re looking for an introductory textbook it’s worth a look. Available from Routledge, and the usual stockists including Amazon.

Sammons, A. & Putwain, D. (2018). Psychology and Crime (Second Edition). London: Routledge.

Round-up: criminological psychology

Image: Tony Webster.

I’ve finished teaching criminological psychology for the time being so here’s a round-up of the resources I’ve published here recently on the topic.

Resources: drug treatments for sex offenders

Source: wikimedia.

Here are some bits I’ve made recently for teaching drug treatments for sex offenders. There’s an evaluation exercise where students are invited to identify weaknesses in a sample of evaluative writing about drug treatments for sex offenders and then write their own improved version (includes a teacher cribsheet with the main issues). There’s also a summary of some recent research  in this area and a short slideshow to support the lesson.

Resources: anger management with offenders

Here is a lesson on anger management with offenders. There is a slideshow giving background including Novaco’s cognitive model of anger and two application problems where students identify anger-relevant process and suggest ways of addressing them. There is also a results table and some extracts from Henwood et al’s (2015) meta-analysis of anger management with offenders. The lesson assumes you have set preparation learning on the topic.

Resources: 47,XYY kayrotype and criminality

Souce: wikimedia. Creative commons license.

Here’s a lesson on the 47,XYY karyotype (XYY syndrome) using the jigsaw format. It starts with a factual learning check and some slides to support an explanation of three different explanations of the association between XYY and offending. The jigsaw element is oriented towards using research into 47,XYY as a way of discussing various issues and debates in psychology. These are based on some of those specified by Edexcel (reductionism, socially sensitive research, development of knowledge over time and nature/nurture) but I imagine they’re fairly broadly applicable. There’s a slideshow, a Socrative true/false quiz on XYY and a set of jigsaw materials on XYY for four groups.

Resources: two lessons on interviewing witnesses and suspects

Photo: Krystian Olszansky (Creative Commons licence)

Here are two lessons on interviewing witnesses (cognitive interview) and suspects (ethical interview). Each lesson assumes you have set advance reading from whichever textbook or other source you are using.  Lesson one starts with students making comparisons between standard police interviews and cognitive interviews using this visible thinking routine for comparing. The main application activity is to write a letter to a chief constable persuading her to adopt cognitive interviewing in her force.  I’ve found that some students get all up tight about writing an essay because it smells like assessment and they do a better job if they write a letter instead, even though the same skills are required. The slideshow gives a structure for the lesson.

Lesson two starts with the use of the same VTR. This is followed by an analysis task using this recording of a police suspect interview.  Finally, students work up an evaluation using a handout of evidence. A slideshow structures the lesson.

Resources: weapon focus, research methods and statistics

Ministry of Defence; licensed under Creative Commons.
Do to weapon focus, you will later be unable to recall this blog post.

Here are some resources for teaching weapon focus, research methods and statistics. There is a set of stimuli for a weapon focus experiment and a response sheet (copy for the students or project it). The experiment is designed with at least one fatal flaw (failure to counterbalance in a repeated measures design) and several extraneous variables (e.g. image quality). You could use it to demo the general idea underlying most weapon focus research, use it as a stimulus for class discussion etc. Alternately, there is a slideshow to structure a lesson and a set of activities on weapon focus, research methods and statistics.

Teaching eyewitness testimony (and many other things) using the jigsaw approach

Image by Jared Tarbell; used under Creative Commons license.
An oblique approach to image choice would add subtlety but, frankly, it’s been a long week.

I’m a big fan of the jigsaw classroom (Aronson et al, 1978) to the point where I probably overuse it. If you’re not familiar, it’s a cooperative learning activity format in which students learn part of a topic so they can teach it to others and, in turn, are taught other parts by them. The aim is that all the students end up learning the whole topic. The students are organised into ‘jigsaw’ groups. Each jigsaw group is then split up and rearranged into ‘expert’ groups. Each expert group is given responsibility for mastering one part of the topic knowledge. The expert groups are then returned to their jigsaw groups, where they teach each other. There’s a good guide to the jigsaw technique here.

When it’s done well, jigsaw promotes a high degree of interdependence amongst learners and exposes all the students to the material to be learned, both of which contribute to its effectiveness as a psychology teaching strategy (Tomcho & Foels, 2012). Compared to non-cooperative methods (i.e. those that do not require interdependence) techniques like jigsaw provide more effective learning of conceptual knowledge, a greater sense of competence and more enjoyment of learning. This is particularly so when the activity is highly structured with assigned roles, prompts for self reflection, and both individual and group feedback on performance (Supanc et al, 2017).

When I use it I like to keep group sizes to a maximum of four. If you have 16 or 32 students in a class that’s great because you can divide the material into four and have four students in each jigsaw/expert group. A group of 25 also works well, with the material divided into five parts. It can be a headache to assign groups when you have inconvenient numbers of students so you need to plan ahead and think about how you will ensure that every student learns all the content.

In my experience, the jigsaw approach works best when:

  • You stress that the activity is all about understanding what they are learning and remind students throughout of their responsibility for both teaching and learning the material. The danger is that it can easily become an ‘information transfer’ exercise, with students copying down material verbatim and dictating to each other without understanding. It is sometimes useful to impose rules to prevent this (e.g. limit the number of words students are allowed to use when making notes in their expert groups, only allowing them to draw pictures etc.)
  • The learning material is tailored to the students. This means adjusting the difficulty/complexity level of the material to be just difficult enough so that the students need to engage with it and each other to co-construct an understanding. Too difficult and they can’t do it; too easy and it becomes trivial; either way, they lose interest.
  • The learning material is tailored to the timescale. Again, we want the students to create meaning from the materials and this takes time. If too little time is given then either some of the material won’t get taught, or students will resort to ‘information transfer’ and there will be no co-construction.
  • You actively monitor what’s going on in the groups, particularly the expert groups. This is how we moderate the difficulty of the materials. We don’t want the students teaching each other things that are wrong. At the same time, it’s important not to just charge in and instruct the learners directly. Doing that undermines the point of the approach. In any case, I wouldn’t use jigsaw to teach fundamental concepts for the first time; it’s just too risky. I prefer to use it to elaborate on and deepen understanding of ideas.
  • You have an accountability mechanism (i.e. a test). Multiple choice/online assessment is quick and effective if the test items are well written. Plickers and Socrative are useful tools for this. One approach that can work here is to tell the students that everyone will do the test but that each student will receive the average mark for their jigsaw group. This creates an incentive for students to ensure that everyone in the group does well (although it also creates an incentive to blame people if the group does badly, so YMMV).

Here’s a set of materials for teaching some of the factors that moderate the misinformation effect on eyewitness testimony using the jigsaw method. This is for a one-hour lesson with a 10-15 minute expert groups phase and a 15-20 minute jigsaw groups phase. There is a slideshow that structures the lesson and a set of learning materials covering the moderating effects of time, source reliability, centrality and awareness of misinformation. You can extend the activity by prompting students to evaluate the evidence offered.  If you are a Socrative user (free account with paid upgrades) you can get the multiple choice quiz using this link. As with all these approaches, there is no guarantee that it’s superior to the alternatives but the available evidence suggests it is worth trying.  And, like everything, its effectiveness is likely to grow when both teacher and students are practised in the technique.

Aronson, E., Blaney, N., Stephin, C., Sikes, J., & Snapp, M. (1978). The Jigsaw Classroom. Beverly Hills, CA: Sage Publishing Company

Supanc, M., Vollinger, V.A. & Brunstein, J.C. (2017).  High-structure versus low-structure cooperative learning in introductory psychology classes for student teachers: Effects on conceptual knowledge, self-perceived competence, and subjective task values.  Learning and Instruction, 50, 75-84.

Tomcho, T.J. & Foels, R. (2012).  Meta-analysis of group learning activities: Empirically based teaching recommendations.  Teaching of Psychology, 39 (3), 159-169.

Resources: proficiency scales for criminological psychology topics

If you get this you win 1,000,000 geek points.

I’m not a massive fan of presenting a set of learning objectives (or whatever we’re calling them this inspection cycle) at the start of every lesson. I agree it’s important that students know where they’re heading and how what they’re engaging with relates to other things they are learning; I just don’t think that sticking today’s LOs on the board and reading them out/getting students to copy them down is a particularly effective way of accomplishing this. That said, there is still an argument for defining clear set of LOs when we plan.  When we teach a syllabus whose content and examination format we don’t determine (like A – Level Psychology) careful thought needs to be given to translating its potentially vague statements into terms that are meaningful given the people we’re teaching, the context in which we’re teaching them and the timescales involved.

I’ve done this a variety of ways in the past. I’ve always found it a very useful exercise for me, but of relative little apparent value to my students. To try to extract some more mileage from the process I’m currently experimenting with proficiency scales (Marzano, 2017). Besides communicating clearly what students need to be able to do, Marzano’s format also requires us to consider what progression in knowledge and understanding might look like in a topic and gives a scoring rubric we can use as the basis for assessment and feedback. I am interested to see how this works in practice.

Here is a set of proficiency scales for the Edexcel criminological psychology topic and a generic proficiency scale (RTF) you can adapt for your own purposes. I’ve divided up the content using SOLO levels (Biggs & Collis, 1982) because it’s a fairly useful model of how students’ knowledge and understanding can be expected to develop. I’ll upload more topic proficiency scales when I’ve finished writing them.

Biggs, J.B. & Collis, K.F. (1982). Evaluating the quality of learning: the SOLO taxonomy. New York: Academic Press.

Marzano, R.J. (2017). The new art and science of teaching. Alexandria: Solution Tree/ASCD.